Topics in the November 2009 Exam Paper for CHEM1904

Click on the links for resources on each topic.

2009-N-2:

- Weak Acids and Bases
- Calculations Involving pKa
- Solubility Equilibrium

2009-N-3:

- Physical States and Phase Diagrams
- Crystal Structures

2009-N-4:

- Metal Complexes
- Coordination Chemistry

2009-N-5:

• Kinetics

2009-N-6:

Crystal Structures

2009-N-7:

- Physical States and Phase Diagrams
- Crystal Structures

2009-N-8:

- Alkenes
- Alcohols
- Aldehydes and Ketones
- Carboxylic Acids and Derivatives
- Synthetic Strategies

2009-N-9:

• Carboxylic Acids and Derivatives

2009-N-10:

- Carboxylic Acids and Derivatives
- Aromatic Compounds

2009-N-11:

Structural Determination

2009-N-12:

• Stereochemistry

2009-N-13:

- Alcohols
- Organic Mechanisms and Molecular Orbitals

November 2009

22/46(a)

The University of Sydney

CHEM1902 - CHEMISTRY 1B (ADVANCED)

and

CHEM1904 - CHEMISTRY 1B (SPECIAL STUDIES PROGRAM)

CONFIDENTIAL

TIME ALLOWED: THREE HOURS

NOVEMBER 2009

SECOND SEMESTER EXAMINATION

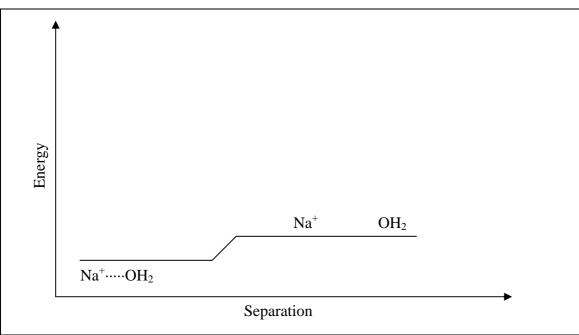
GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 19 & 24 are for rough working only.

OFFICIAL USE ONLY


Marks
Gained

		Marks		
Page	Max	Gained		Marker
10	6			
11	6			
12	6			
13	7			
14	5			
15	3			
16	6			
17	4			
18	3			
20	4			
21	4			
22	10			
23	3			
Total	67			

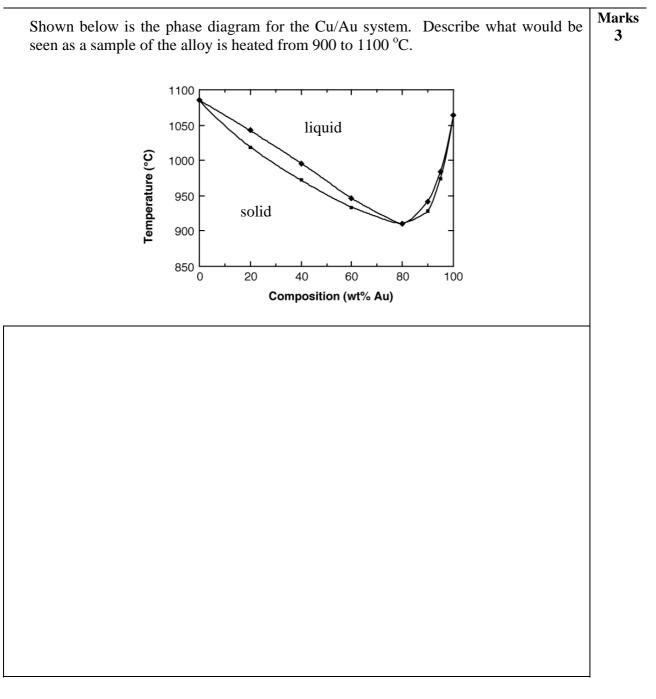
 All forms of life depend on iron and the concentration of iron in the oceans and elsewhere is one of the primary factors limiting the growth rates of the most basic life forms. One reason for the low availability of iron(III) is the insolubility of the hydroxide, Fe(OH)₃, which has a K_{sp} of only 2 × 10⁻³⁹. Calculate the maximum possible concentration of Fe³⁺(aq) in the pre-industrial era ocean which had a pH of about 8.2. 	Marks 6
$[Fe^{3+}(aq)] =$	_
How many Fe ³⁺ (aq) ions are present in a litre of seawater at this pH?	
Answer: The pH of the ocean is predicted to drop to 7.8 by the end of this century as the concentration of CO_2 in the atmosphere increases. What percentage change in the concentration of Fe ³⁺ (aq) will result from this fall in pH?	_
Answer:	

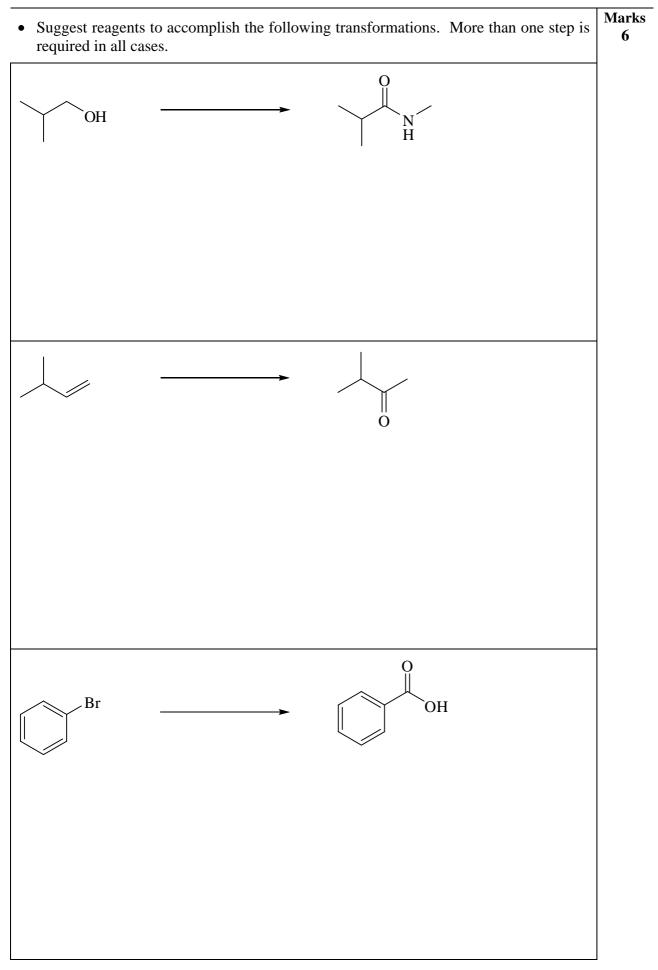
6

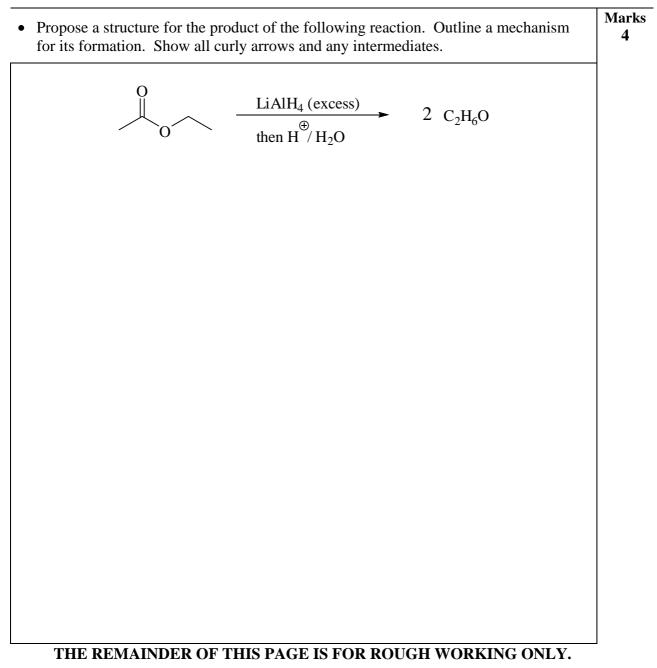
Marks • Shown below is the energy profile for the separation of Na^+ from H_2O . Draw energy profiles for the separation of Mg^{2+} from Cl^- and for the breaking of the C–C bond in ethane to the same scales (approximately).

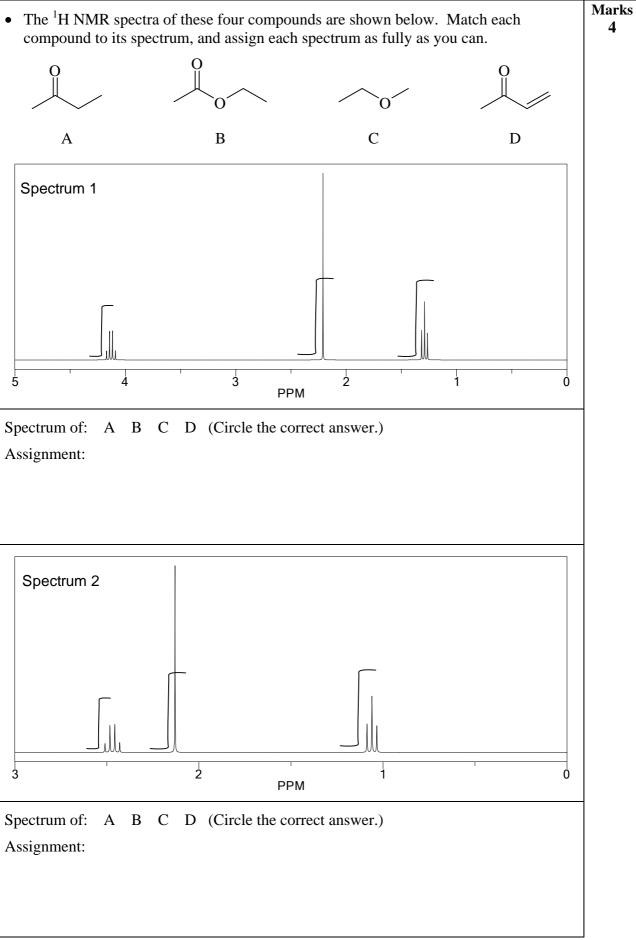
Name the inter- or intra-molecular forces involved in each of these three interactions.

$Na^+ OH_2$	
Mg^{2+} Cl^{-}	
C C	

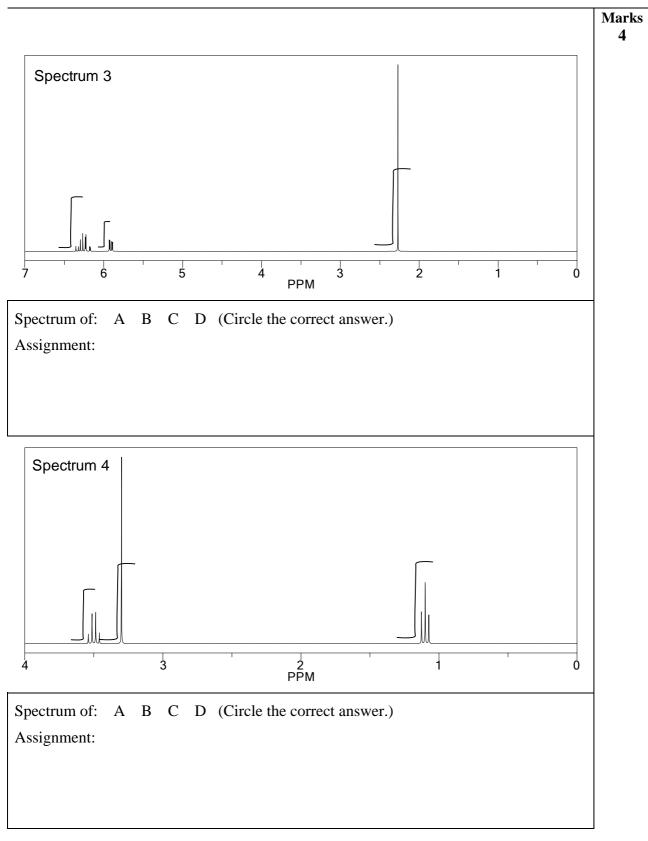

Explain why bonds such as C–C are generally considered to be stronger than interactions such as that between Mg^{2+} and Cl^{-} .

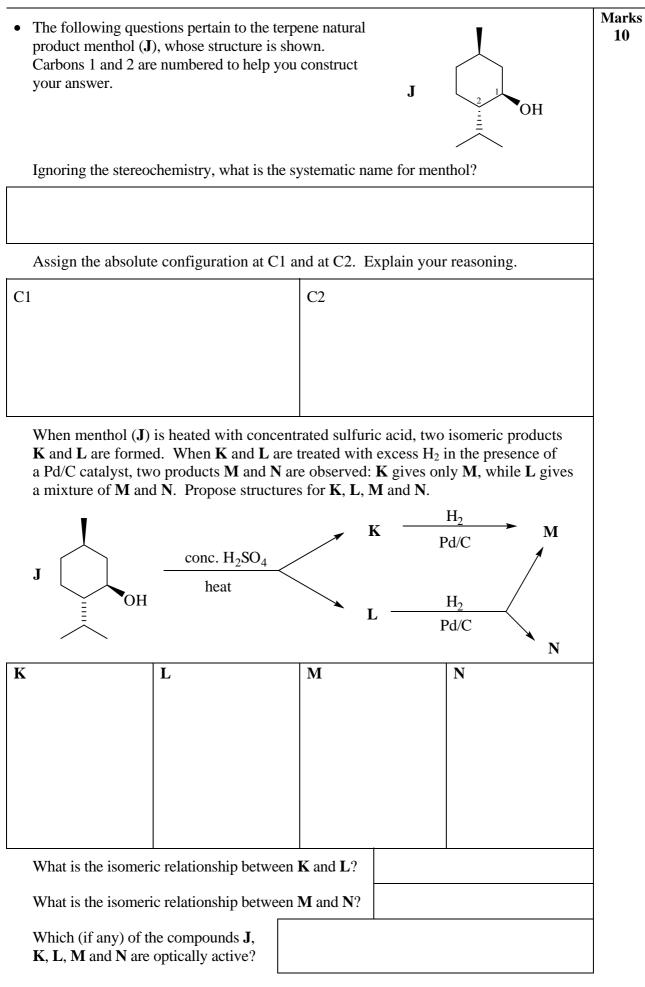

•	When cobalt(II) chloride is reacted with ethane-1,2-diamine (en) and the product is oxidised in the air, a purple compound with the empirical formula $CoCl_3$ ·2en is obtained. When reacted with silver nitrate only one chloride ion is released. The compound can be resolved into its enantiomeric forms. Give the structural formula of the compound.	Marks 6
		_
	Give the name of the compound.	-
	Draw the structure of the metal complex component of the compound.	-
	What is the <i>d</i> electron configuration of the Co in this complex?	-
	What types of isomers can be formed by a compound with this empirical formula?	_
	Which of the possible isomers has formed? Explain the logic you have used in determining this.	_
·		


Marks • Nitrogen monoxide, a noxious pollutant, reacts with oxygen to produce nitrogen 7 dioxide, another toxic gas: $2NO(g) + O_2(g) \rightarrow 2NO_2(g)$ The following rate data were collected at 225 °C. Initial rate, $-d[O_2]/dt$, (M s⁻¹) Experiment $[NO]_0(M)$ $[O_2]_0(M)$ 1.6×10^{-3} 1.3×10^{-2} 1.1×10^{-2} 1 1.3×10^{-2} 2.2×10^{-2} 3.2×10^{-3} 2 2.6×10^{-2} 1.1×10^{-2} 6.4×10^{-3} 3 Determine the rate law for the reaction. Calculate the value of the rate constant at 225 $^{\rm o}{\rm C}.$ Answer: Calculate the rate of appearance of NO₂ when $[NO] = [O_2] = 6.5 \times 10^{-3} \text{ M}.$ Answer: Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.

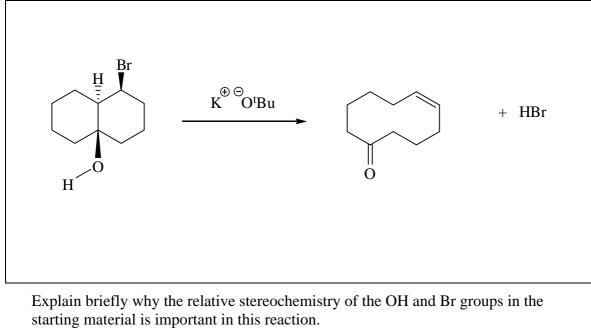

Marks • The diagram below shows the structure of an alloy of copper and gold with a gold 5 atom at each of the corners and a copper atom in the centre of each of the faces. The unit cell dimension (edge length, *a*) for this alloy is 0.36 nm. \bigcirc \bigcirc a \bigcirc \bigcirc \bigcirc \bigcirc ◯ = Cu \bigcirc = Au What is the chemical formula of the alloy? Answer: Given that pure gold is 24 carat and gold alloyed with 25% by weight of another metal is termed 18 carat gold, what carat gold is this alloy? Answer: What is the volume of the unit cell? Answer: What is the density of the alloy? Answer:

THIS QUESTION CONTINUES ON THE NEXT PAGE





THIS QUESTION CONTINUES ON THE NEXT PAGE.



Marks • For each of the following pairs of compounds, identify which is the stronger acid and 3 give reasons for your choice. 0 O ∖__∕OH and ЮН Ò **(P**) (**Q**) and (**R**) **(S)** CF₃CO₂H CH₃CO₂H and **(T)** (U)

3

• Add curly arrows to complete the mechanism of the unusual E2 reaction shown below, the Grob Fragmentation. (Note that KO^tBu is potassium *tert*-butoxide, a strong base.)

starting material is important in this reaction.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

DATA SHEET

Physical constants

Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \text{ kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \text{ kg}$

Mass of neutron, $m_{\rm n} = 1.6749 \times 10^{-27} \, \rm kg$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa	1 Pa = 1 N m ⁻² = 1 kg m ⁻¹ s ⁻²
$0 ^{\circ}\text{C} = 273 \text{K}$	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
$1 L = 10^{-3} m^3$	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 \text{ Å} = 10^{-10} \text{ m}$	1 tonne = 10^3 kg
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	$1 \text{ W} = 1 \text{ J s}^{-1}$

Deci	mal fract	ions	Deci	Decimal multiples					
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol				
10^{-3}	milli	m	10^{3}	kilo	k				
10 ⁻⁶	micro	μ	10^{6}	mega	Μ				
10^{-9}	nano	n	10 ⁹	giga	G				
10^{-12}	pico	р	10^{12}	tera	Т				

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

Standard Reduction Potentials, E°	
Reaction	E° / V
$S_2O_8^{2-} + 2e^- \rightarrow 2SO_4^{2-}$	+2.01
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$\operatorname{Ce}^{4+}(\operatorname{aq}) + \operatorname{e}^{-} \rightarrow \operatorname{Ce}^{3+}(\operatorname{aq})$	+1.72
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Br_2 + 2e^- \rightarrow 2Br^-(aq)$	+1.10
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+}(aq) + 2H_2O$	+0.96
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$I_2(aq) + 2e^- \rightarrow 2I^-(aq)$	+0.62
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.13
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}(s)$	-0.14
$Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.24
$\operatorname{Co}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Co}(s)$	-0.28
$\operatorname{Fe}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Fe}(s)$	-0.44
$\operatorname{Cr}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Cr}(s)$	-0.74
$\operatorname{Zn}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Zn}(s)$	-0.76
$2H_2O + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.83
$\operatorname{Cr}^{2+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Cr}(s)$	-0.89
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.68
$Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	-2.36
$Na^+(aq) + e^- \rightarrow Na(s)$	-2.71
$Ca^{2+}(aq) + 2e^{-} \rightarrow Ca(s)$	-2.87
$\text{Li}^+(\text{aq}) + e^- \rightarrow \text{Li}(s)$	-3.04

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

Useful formulas

Quantum Chemistry	Electrochemistry
$E = h u = h c / \lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times 2.303 \log Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$= E^{\circ} - (RT/nF) \times \ln Q$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E^{\circ} = (RT/nF) \times 2.303 \log K$
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	$= (RT/nF) \times \ln K$
	$E = E^{\circ} - \frac{0.0592}{n} \log Q \text{ (at 25 °C)}$
Acids and Bases	Gas Laws
$pK_{\rm w} = pH + pOH = 14.00$	PV = nRT
$\mathbf{p}K_{\mathrm{w}} = \mathbf{p}K_{\mathrm{a}} + \mathbf{p}K_{\mathrm{b}} = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$
$pH = pK_a + \log\{[A^-] / [HA]\}$	$E_{\rm k} = \frac{1}{2}mv^2$
Radioactivity	Kinetics
$t_{1/2} = \ln 2/\lambda$	$t_{\frac{1}{2}} = \ln 2/k$
$A = \lambda N$	$k = A e^{-Ea/RT}$
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_{\rm o} - kt$
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
Colligative Properties and Solutions	Thermodynamics and Equilibrium
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
c = kp	$\Delta G^{\circ} = -RT \ln K$
$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta_{\rm univ}S^\circ = R\ln K$
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(RT ight)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_0 r} N_{\rm A}$	Area of circle = πr^2
$2 = 4\pi\varepsilon_0 r^{++}$	Surface area of sphere = $4\pi r^2$

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 hydrogen H 1.008																	2 негим Не 4.003
3 LITHIUM Li	4 beryllium Be											5 boron B	6 carbon C	7 nitrogen N	8 oxygen O	9 ^{fluorine} F	10 меом Ne
6.941 11 ^{зодіим} Na	9.012 12 magnesium Mg	-										10.81 13 ALUMINIUR Al	12.01 14 SILICON SI	14.01 15 рнозрногиз Р	16.00 16 ^{SULFUR} S	19.00 17 chilorine Cl	20.18 18 Argon
1 Na 22.99 19 ротаssium	Mg 24.31 20 calcium	21 scandium	22 TITANIUM	23 VANADIUM	24 CHROMIUM	25 manganese	26 iron	27 cobalt	28 NICKEL	29 COPPER	30 zinc	AI 26.98 31 GALLIUM	31 28.09 32 GERMANIUM	30.97 33 ARSENIC	32.07 34 selenium	35.45 35 BROMINE	Ar 39.95 36 krypton
K 39.10	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.3		Ge 72.59	As 74.92	Se 78.96	Br 79.90	Kr 83.80
37 _{кивидим} Rb	38 strontium Sr	39 yttrium Y	40 zirconium Zr	Nb	42 molybdenum Mo	43 тесниетим Тс	44 ^{RUTHENIUM} Ru	45 ^{кнодіим} Rh	46 palladium Pd	47 SILVER Ag	48 CADMIU Cd	In	50 ты Sn	51 ANTIMONY Sb	52 tellurium Te	53 iodine I	54 ^{xenon} Xe
85.47 55 CAESIUM	87.62 56 barium	88.91 57-71	HAFNIUM	92.91 73 TANTALUM	95.94 74 TUNGSTEN	[98.91] 75 RHENIUM	101.07 76 озмиим	102.91 77 ікіріим	106.4 78 Platinum	107.87 79 GOLD	112.4 80 мексин	y 81 THALLIUM	82 LEAD	121.75 83 візмитн	127.60 84 POLONIUM	126.90 85 ASTATINE	131.30 86 RADON
Cs 132.91	Ba 137.34	0.0.1.0	Hf 178.49		W 183.85	Re 186.2	Os 190.2	Ir 192.22	Pt 195.09	Au 196.97	Hg 200.5		Pb 207.2	Bi 208.98	Po [210.0]	At [210.0]	Rn [222.0]
87 francium Fr [223.0]	88 RADIUM Ra [226.0]	89-10	3 104 RUTHERFORD Rf [261]	105 очи	106 seaborgium Sg [266]	107 вонкіим Вh [262]	108 наssium Hs [265]	109 меітлекіим Mt [266]	110 darmstadtium Ds [271]	111 ROENTGENIUM Rg [272]							
LANTHANOI	DS LANTH	IANUM	58 cerium Ce	59 praseodymium Pr	60 _{NEODYMIUM} Nd	61 promethium Pm	62 samarium Sm	63 Europium Eu	G	d Te	55 вилм Г b	66 ^{dysprosium} Dy	67 ^{ноімим} Но	68 ERBIUM Er	69 ^{тнилим} Тт	70 ^{уттеквіим} Yb	71 _{цитетим} Lu
ACTINOIDS	138 8 5 ACT	9 NIUM	140.12 90 тногим Th	140.91 91 protactinium Pa	144.24 92 uranium U	[144.9] 93 Neptunium Np	150.4 94 Plutonium Pu	151.96 95 AMERICIUM Am	96	5 C	8.93 97 ELLIUM Bk	162.50 98 californium Cf	164.93 99 EINSTEINIUM ES	167.26 100 _{Fermium} Fm	168.93 101 mendelevium Md	173.04 102 Nobelium No	174.97 103 LAWRENCIUM Lr
	[22	7.0]	232.04	[231.0]	238.03	[237.0]	[239.1]	[243.1] [247	.1] [24	7.1]	[252.1]	[252.1]	[257.1]	[256.1]	[259.1]	[260.1]

PERIODIC TABLE OF THE ELEMENTS