Click on the links for resources on each topic.

2009-N-2:

- Weak Acids and Bases
- Calculations Involving $\mathrm{p} \mathrm{Ka}_{\mathrm{a}}$
- Solubility Equilibrium

2009-N-3:

- Physical States and Phase Diagrams
- Crystal Structures

2009-N-4:

- Metal Complexes
- Coordination Chemistry

2009-N-5:

- Kinetics

2009-N-6:

- Crystal Structures

2009-N-7:

- Physical States and Phase Diagrams
- Crystal Structures

2009-N-8:

- Alkenes
- Alcohols
- Aldehydes and Ketones
- Carboxylic Acids and Derivatives
- Synthetic Strategies

2009-N-9:

- Carboxylic Acids and Derivatives

2009-N-10:

- Carboxylic Acids and Derivatives
- Aromatic Compounds

2009-N-11:

- Structural Determination

2009-N-12:

- Stereochemistry

2009-N-13:

- Alcohols
- Organic Mechanisms and Molecular Orbitals

CHEM1902 - CHEMISTRY 1B (ADVANCED)

and

CHEM1904 - CHEMISTRY 1B (SPECIAL STUDIES PROGRAM)

CONFIDENTIAL
NOVEMBER 2009

TIME ALLOWED: THREE HOURS
SECOND SEMESTER EXAMINATION

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME		SID	
OTHER		TABBER	
NAMES		NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 21 pages of examinable material.
- Complete the written section of the examination paper in INK.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100 . The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a \bullet.
- Electronic calculators, including programmable calculators, may be used. Students are warned, however, that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheet.
- Pages 19 \& 24 are for rough working only.

OFFICIAL USE ONLY

Page	Marks			Marker
	Max	Gained		
10	6			
11	6			
12	6			
13	7			
14	5			
15	3			
16	6			
17	4			
18	3			
20	4			
21	4			
22	10			
23	3			
Total	67			

- All forms of life depend on iron and the concentration of iron in the oceans and elsewhere is one of the primary factors limiting the growth rates of the most basic life forms. One reason for the low availability of iron(III) is the insolubility of the hydroxide, $\mathrm{Fe}(\mathrm{OH})_{3}$, which has a $K_{\text {sp }}$ of only 2×10^{-39}.
Calculate the maximum possible concentration of $\mathrm{Fe}^{3+}(\mathrm{aq})$ in the pre-industrial era ocean which had a pH of about 8.2.

How many $\mathrm{Fe}^{3+}(\mathrm{aq})$ ions are present in a litre of seawater at this pH ?

The pH of the ocean is predicted to drop to 7.8 by the end of this century as the concentration of CO_{2} in the atmosphere increases. What percentage change in the concentration of $\mathrm{Fe}^{3+}(\mathrm{aq})$ will result from this fall in pH ?

- Shown below is the energy profile for the separation of Na^{+}from $\mathrm{H}_{2} \mathrm{O}$. Draw energy profiles for the separation of Mg^{2+} from Cl^{-}and for the breaking of the $\mathrm{C}-\mathrm{C}$ bond in ethane to the same scales (approximately).

Name the inter- or intra-molecular forces involved in each of these three interactions.
\square
Explain why bonds such as C-C are generally considered to be stronger than interactions such as that between Mg^{2+} and Cl^{-}.

- When cobalt(II) chloride is reacted with ethane-1,2-diamine (en) and the product is oxidised in the air, a purple compound with the empirical formula $\mathrm{CoCl}_{3} \cdot 2 e n$ is obtained. When reacted with silver nitrate only one chloride ion is released. The compound can be resolved into its enantiomeric forms.

Give the structural formula of the compound.

Give the name of the compound.
\square
Draw the structure of the metal complex component of the compound.
\square
What is the d electron configuration of the Co in this complex?
\square

What types of isomers can be formed by a compound with this empirical formula?
\square
Which of the possible isomers has formed? Explain the logic you have used in determining this.

- Nitrogen monoxide, a noxious pollutant, reacts with oxygen to produce nitrogen dioxide, another toxic gas:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

The following rate data were collected at $225^{\circ} \mathrm{C}$.

Experiment	$[\mathrm{NO}]_{0}(\mathrm{M})$	$\left[\mathrm{O}_{2}\right]_{0}(\mathrm{M})$	Initial rate, $-\mathrm{d}\left[\mathrm{O}_{2}\right] / \mathrm{dt},\left(\mathrm{M} \mathrm{s}^{-1}\right)$
1	1.3×10^{-2}	1.1×10^{-2}	1.6×10^{-3}
2	1.3×10^{-2}	2.2×10^{-2}	3.2×10^{-3}
3	2.6×10^{-2}	1.1×10^{-2}	6.4×10^{-3}

Determine the rate law for the reaction.
\qquad
Calculate the value of the rate constant at $225^{\circ} \mathrm{C}$.
\square
Calculate the rate of appearance of NO_{2} when $[\mathrm{NO}]=\left[\mathrm{O}_{2}\right]=6.5 \times 10^{-3} \mathrm{M}$.

Suggest a possible mechanism for the reaction based on the form of the rate law. Explain your answer.

- The diagram below shows the structure of an alloy of copper and gold with a gold atom at each of the corners and a copper atom in the centre of each of the faces. The unit cell dimension (edge length, a) for this alloy is 0.36 nm .

$O=A u$
$0=\mathrm{Cu}$

What is the chemical formula of the alloy?

	Answer:

Given that pure gold is 24 carat and gold alloyed with 25% by weight of another metal is termed 18 carat gold, what carat gold is this alloy?

What is the volume of the unit cell?

	Answer:

What is the density of the alloy?
\square

Shown below is the phase diagram for the $\mathrm{Cu} / \mathrm{Au}$ system. Describe what would be seen as a sample of the alloy is heated from 900 to $1100^{\circ} \mathrm{C}$.

- Suggest reagents to accomplish the following transformations. More than one step is

- Propose a structure for the product of the following reaction. Outline a mechanism for its formation. Show all curly arrows and any intermediates.

- The ${ }^{1} \mathrm{H}$ NMR spectra of these four compounds are shown below. Match each compound to its spectrum, and assign each spectrum as fully as you can.

A

B

C

D

Spectrum of: A B C D (Circle the correct answer.)
Assignment:

Spectrum of: A B C D (Circle the correct answer.)
Assignment:

Spectrum of: A B C D (Circle the correct answer.)
Assignment:

Spectrum of: A B C D (Circle the correct answer.)
Assignment:

- For each of the following pairs of compounds, identify which is the stronger acid and give reasons for your choice.

(R)
and

(S)
$\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ and $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
(T)
(U)
- The following questions pertain to the terpene natural product menthol (\mathbf{J}), whose structure is shown. Carbons 1 and 2 are numbered to help you construct your answer.

Ignoring the stereochemistry, what is the systematic name for menthol?
\square

Assign the absolute configuration at C 1 and at C 2 . Explain your reasoning.

C1	C 2

When menthol (\mathbf{J}) is heated with concentrated sulfuric acid, two isomeric products \mathbf{K} and \mathbf{L} are formed. When \mathbf{K} and \mathbf{L} are treated with excess H_{2} in the presence of a Pd/C catalyst, two products \mathbf{M} and \mathbf{N} are observed: \mathbf{K} gives only \mathbf{M}, while \mathbf{L} gives a mixture of \mathbf{M} and \mathbf{N}. Propose structures for $\mathbf{K}, \mathbf{L}, \mathbf{M}$ and \mathbf{N}.

- Add curly arrows to complete the mechanism of the unusual E2 reaction shown below, the Grob Fragmentation. (Note that $\mathrm{KO}^{\mathrm{t}} \mathrm{Bu}$ is potassium tert-butoxide, a strong base.)

Explain briefly why the relative stereochemistry of the OH and Br groups in the starting material is important in this reaction.

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

CHEM1902 - CHEMISTRY 1B (ADVANCED)
 CHEM1904 - CHEMISTRY 1B (SSP)
 DATA SHEET

Physical constants
Avogadro constant, $N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1}$
Faraday constant, $F=96485 \mathrm{C} \mathrm{mol}^{-1}$
Planck constant, $h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
Speed of light in vacuum, $c=2.998 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
Rydberg constant, $E_{\mathrm{R}}=2.18 \times 10^{-18} \mathrm{~J}$
Boltzmann constant, $k_{\mathrm{B}}=1.381 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1}$
Permittivity of a vacuum, $\varepsilon_{0}=8.854 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$
Gas constant, $R=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$

$$
=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Charge of electron, $e=1.602 \times 10^{-19} \mathrm{C}$
Mass of electron, $m_{\mathrm{e}}=9.1094 \times 10^{-31} \mathrm{~kg}$
Mass of proton, $m_{p}=1.6726 \times 10^{-27} \mathrm{~kg}$
Mass of neutron, $m_{\mathrm{n}}=1.6749 \times 10^{-27} \mathrm{~kg}$

Properties of matter
Volume of 1 mole of ideal gas at 1 atm and $25^{\circ} \mathrm{C}=24.5 \mathrm{~L}$
Volume of 1 mole of ideal gas at 1 atm and $0^{\circ} \mathrm{C}=22.4 \mathrm{~L}$
Density of water at $298 \mathrm{~K}=0.997 \mathrm{~g} \mathrm{~cm}^{-3}$

Conversion factors

$1 \mathrm{~atm}=760 \mathrm{mmHg}=101.3 \mathrm{kPa}$	$1 \mathrm{~Pa}=1 \mathrm{~N} \mathrm{~m}^{-2}=1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$
$0{ }^{\circ} \mathrm{C}=273 \mathrm{~K}$	$1 \mathrm{Ci}=3.70 \times 10^{10} \mathrm{~Bq}$
$1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$	$1 \mathrm{~Hz}=1 \mathrm{~s}^{-1}$
$1 \AA=10^{-10} \mathrm{~m}$	1 tonne $=10^{3} \mathrm{~kg}$
$1 \mathrm{eV}=1.602 \times 10^{-19} \mathrm{~J}$	$1 \mathrm{~W}=1 \mathrm{~J} \mathrm{~s}^{-1}$

Decimal fractions

Fraction	Prefix	Symbol
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Decimal multiples

Multiple	Prefix	Symbol
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G
10^{12}	tera	T

CHEM1902 - CHEMISTRY 1B (ADVANCED)
 CHEM1904 - CHEMISTRY 1B (SSP)

Standard Reduction Potentials, E°

Reaction	E° / V
$\mathrm{S}_{2} \mathrm{O}_{8}{ }^{2-}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{SO}_{4}{ }^{2-}$	+2.01
$\mathrm{Co}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$\mathrm{Ce}^{4+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ce}^{3+}(\mathrm{aq})$	+1.72
$\mathrm{MnO}_{4}^{-}(\mathrm{aq})+8 \mathrm{H}^{+}(\mathrm{aq})+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+4 \mathrm{H}_{2} \mathrm{O}$	+1.51
$\mathrm{Au}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Au}(\mathrm{s})$	+1.50
$\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})$	+1.36
$\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}(\mathrm{aq})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$	+1.23
$\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-}(\mathrm{aq})$	+1.10
$\mathrm{MnO}_{2}(\mathrm{~s})+4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{3+}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}$	+0.96
$\mathrm{NO}_{3}{ }^{-}(\mathrm{aq})+4 \mathrm{H}^{+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}$	+0.96
$\mathrm{Pd}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pd}(\mathrm{s})$	+0.92
$\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	$+0.77$
$\mathrm{I}_{2}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{I}^{-}(\mathrm{aq})$	+0.62
$\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.53
$\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})$	+0.34
$\mathrm{Sn}^{4+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}^{2+}(\mathrm{aq})$	+0.15
$2 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})$	0 (by definition)
$\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.04
$\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Pb}(\mathrm{s})$	-0.13
$\mathrm{Sn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Sn}(\mathrm{s})$	-0.14
$\mathrm{Ni}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ni}(\mathrm{s})$	-0.24
$\mathrm{Co}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Co}(\mathrm{s})$	-0.28
$\mathrm{Fe}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe}(\mathrm{s})$	-0.44
$\mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.74
$\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})$	-0.76
$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$	-0.83
$\mathrm{Cr}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Cr}(\mathrm{s})$	-0.89
$\mathrm{Al}^{3+}(\mathrm{aq})+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}(\mathrm{s})$	-1.68
$\mathrm{Mg}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Mg}(\mathrm{s})$	-2.36
$\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Na}(\mathrm{s})$	-2.71
$\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Ca}(\mathrm{s})$	-2.87
$\mathrm{Li}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Li}(\mathrm{s})$	-3.04

CHEM1902 - CHEMISTRY 1B (ADVANCED) CHEM1904 - CHEMISTRY 1B (SSP)

Useful formulas

Quantum Chemistry $\begin{aligned} & E=h \nu=h c / \lambda \\ & \lambda=h / m v \\ & E=-Z^{2} E_{\mathrm{R}}\left(1 / n^{2}\right) \\ & \Delta x \cdot \Delta(m v) \geq h / 4 \pi \\ & q=4 \pi r^{2} \times 5.67 \times 10^{-8} \times T^{4} \\ & T \lambda=2.898 \times 10^{6} \mathrm{~K} \mathrm{~nm} \end{aligned}$	Electrochemistry $\Delta G^{\circ}=-n F E^{\circ}$ Moles of $e^{-}=I t / F$ $\begin{aligned} E & =E^{\circ}-(R T / n F) \times 2.303 \log Q \\ & =E^{\circ}-(R T / n F) \times \ln Q \\ E^{\circ} & =(R T / n F) \times 2.303 \log K \\ & =(R T / n F) \times \ln K \\ E & =E^{\circ}-\frac{0.0592}{n} \log Q\left(\text { at } 25^{\circ} \mathrm{C}\right) \end{aligned}$
Acids and Bases $\begin{aligned} & \mathrm{p} K_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00 \\ & \mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}=14.00 \\ & \mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \left\{\left[\mathrm{A}^{-}\right] /[\mathrm{HA}]\right\} \end{aligned}$	Gas Laws $\begin{aligned} & P V=n R T \\ & \left(P+n^{2} a / V^{2}\right)(V-n b)=n R T \\ & E_{\mathrm{k}}=1 / 2 m V^{2} \end{aligned}$
Radioactivity $\begin{aligned} & t_{1 / 2}=\ln 2 / \lambda \\ & A=\lambda N \\ & \ln \left(N_{0} / N_{\mathrm{t}}\right)=\lambda t \end{aligned}$ ${ }^{14} \mathrm{C}$ age $=8033 \ln \left(A_{0} / A_{\mathrm{t}}\right)$ years	Kinetics $\begin{aligned} & t_{1 / 2}=\ln 2 / k \\ & k=A \mathrm{e}^{-E a / R T} \\ & \ln [\mathrm{~A}]=\ln [\mathrm{A}]_{\mathrm{o}}-k t \\ & \ln \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \end{aligned}$
Colligative Properties and Solutions $\begin{aligned} & \Pi=\mathrm{cRT} \\ & P_{\text {solution }}=X_{\text {solvent }} \times P_{\text {solvent }}^{\circ} \\ & \mathrm{c}=k \mathrm{p} \\ & \Delta T_{\mathrm{f}}=K_{\mathrm{f}} m \\ & \Delta T_{\mathrm{b}}=K_{\mathrm{b}} m \end{aligned}$	Thermodynamics and Equilibrium $\begin{aligned} & \Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \\ & \Delta G=\Delta G^{\circ}+R T \ln Q \\ & \Delta G^{\circ}=-R T \ln K \\ & \Delta_{\text {univ }} S^{\circ}=R \ln K \\ & K_{\mathrm{p}}=K_{\mathrm{c}}(R T)^{\Delta n} \end{aligned}$
Miscellaneous $\begin{aligned} & A=-\log \frac{I}{I_{0}} \\ & A=\varepsilon c l \\ & E=-A \frac{e^{2}}{4 \pi \varepsilon_{0} r} N_{\mathrm{A}} \end{aligned}$	Mathematics If $\mathrm{ax}{ }^{2}+\mathrm{b} x+\mathrm{c}=0$, then $x=\frac{-\mathrm{b} \pm \sqrt{\mathrm{b}^{2}-4 \mathrm{ac}}}{2 \mathrm{a}}$ $\ln x=2.303 \log x$ Area of circle $=\pi r^{2}$ Surface area of sphere $=4 \pi r^{2}$

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\begin{gathered} 1 \\ \begin{array}{c} \text { Hyobocen } \\ \mathbf{H} \\ 1.008 \\ \hline \end{array}{ }^{2} \end{gathered}$																	2 нешм $\mathbf{H e}$ 4.003
$\begin{gathered} \hline 3 \\ \text { цтним } \\ \mathbf{L i} \\ 6.941 \\ \hline \end{gathered}$	4 вегyцuм Be 9.012 12											$\begin{gathered} \hline 5 \\ \text { воRon } \\ \mathbf{B} \\ 10.81 \\ \hline \end{gathered}$	$\begin{gathered} \hline 6 \\ \text { саввом } \\ \mathbf{C} \\ 12.01 \\ \hline \end{gathered}$	$\begin{gathered} 7 \\ \substack{7 \\ \text { sirocen } \\ \mathbf{N} \\ 14.01} \end{gathered}$	$\begin{gathered} \hline 8 \\ \text { оххена } \\ \mathbf{O} \\ 16.00 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{y} \\ \text { fuorne } \\ \mathbf{F} \\ 19.00 \end{gathered}$	$\begin{gathered} \hline 10 \\ \text { NEN } \\ \text { Ne } \\ 20.18 \\ \hline \end{gathered}$
$\begin{gathered} \hline 11 \\ \text { sonum } \\ \mathrm{Na} \\ 22.99 \end{gathered}$	$\begin{gathered} 12 \\ \text { масененмм } \\ \mathbf{M g} \\ 24.31 \end{gathered}$											$\begin{gathered} \hline 13 \\ \substack{\text { Ацшммимм } \\ \text { Al } \\ 26.98 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 14 \\ \text { succov } \\ \mathbf{S i} \\ 28.09 \end{gathered}$	$\begin{gathered} 15 \\ \hline \text { phospronus } \\ \mathbf{P} \\ 30.97 \end{gathered}$	$\begin{gathered} \hline 16 \\ \substack{\text { surfur } \\ \mathbf{S} \\ 32.07} \end{gathered}$	$\begin{gathered} \hline 17 \\ \text { chlorne } \\ \text { Cl } \\ 35.45 \end{gathered}$	$\begin{gathered} \hline 18 \\ \text { AR6on } \\ \mathrm{Ar} \\ 39.95 \\ \hline \end{gathered}$
$\begin{gathered} \hline \begin{array}{c} 19 \\ \text { porassum } \\ \mathbf{K} \end{array} \\ 39.10 \end{gathered}$	$\begin{gathered} \hline 20 \\ \text { саистм } \\ \text { Ca } \\ 40.08 \\ \hline \end{gathered}$	$\begin{gathered} \hline 21 \\ \text { scannum } \\ \text { Sc } \\ 44.96 \end{gathered}$	$\begin{gathered} \hline 22 \\ \text { ттамлм } \\ \mathbf{T i} \\ 47.88 \end{gathered}$	$\begin{gathered} 23 \\ \substack{\text { vaxanum } \\ \mathbf{V} \\ 50.94} \end{gathered}$	$\begin{gathered} 24 \\ \begin{array}{c} \text { chronum } \\ \mathbf{C r} \\ 52.00 \end{array} \end{gathered}$	25 Mancanse Mn 54.94	$\begin{gathered} \hline 26 \\ \text { rıon } \\ \text { Fe } \\ 55.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 27 \\ \text { соват } \\ \mathbf{C o} \\ 58.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 28 \\ \text { мпккн } \\ \mathbf{N i} \\ 58.69 \\ \hline \end{gathered}$	$\begin{gathered} \hline 29 \\ \text { coper } \\ \mathbf{C u} \\ 63.55 \\ \hline \end{gathered}$	$\begin{gathered} \hline 30 \\ \text { zunc } \\ \mathbf{Z n} \\ 65.39 \\ \hline \end{gathered}$	31 GALLIUM Ga 69.72	$\begin{gathered} \hline 32 \\ \text { севмалим } \\ \mathbf{G e} \\ 72.59 \end{gathered}$		$\begin{gathered} \hline 34 \\ \text { shenum } \\ \text { Se } \\ 78.96 \\ \hline \end{gathered}$	$\begin{gathered} \hline 35 \\ \text { вRoмnine } \\ \mathbf{B r} \\ 79.90 \\ \hline \end{gathered}$	$\begin{gathered} 36 \\ \text { кRуPтом } \\ \mathbf{K r} \\ 83.80 \\ \hline \end{gathered}$
$\begin{gathered} \hline \begin{array}{c} 37 \\ \text { Runurum } \\ \text { Rb } \end{array} \\ 85.47 \\ \hline \end{gathered}$	$\begin{gathered} 38 \\ \begin{array}{c} \text { strontuм } \\ \mathbf{S r} \\ 87.62 \end{array} \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} 39 \\ \text { мттимм } \\ \mathbf{Y} \\ 88.91 \end{array} \end{gathered}$	$\begin{array}{\|c\|} \hline 40 \\ \text { дгксомাм } \\ \mathbf{Z r} \\ 91.22 \\ \hline \end{array}$	$\begin{gathered} \hline 41 \\ \text { моввм } \\ \mathbf{N b} \\ 92.91 \end{gathered}$	42 моиввепим $\mathbf{M o}$ 95.94	$\begin{gathered} \hline 43 \\ \text { теснитим } \\ \text { Tc } \\ {[98.91]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 44 \\ \substack{\text { Ruтиним } \\ \mathbf{R u} \\ 101.07 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 45 \\ \text { Rнопим } \\ \mathbf{R h} \\ 102.91 \end{gathered}$	$\begin{gathered} \hline 46 \\ \hline \text { palıanum } \\ \mathbf{P d} \\ 106.4 \end{gathered}$	$\begin{gathered} 47 \\ \text { sulver } \\ \mathbf{A g} \\ 107.87 \end{gathered}$	$\begin{gathered} \hline 48 \\ \text { canмuм } \\ \mathbf{C d} \\ 112.40 \end{gathered}$	$\begin{gathered} \hline 49 \\ \text { мñuм } \\ \text { In } \\ 114.82 \end{gathered}$	$\begin{gathered} \hline 50 \\ \text { тiv } \\ \text { Sn } \\ 118.69 \end{gathered}$	$\begin{gathered} \hline 51 \\ \text { ANTIMNy } \\ \text { Sb } \\ 121.75 \\ \hline \end{gathered}$	$\begin{gathered} \hline 52 \\ \text { теüruм } \\ \mathbf{T e} \\ 127.60 \end{gathered}$	$\begin{gathered} 53 \\ \text { LonNe } \\ \mathbf{I} \\ 126.90 \end{gathered}$	$\begin{gathered} \hline 54 \\ \text { xenow } \\ \mathbf{X e} \\ 131.30 \end{gathered}$
$\begin{gathered} \hline 55 \\ \text { савsum } \\ \text { Cs } \\ 132.91 \\ \hline \end{gathered}$	$\begin{gathered} \hline 56 \\ \text { вавим } \\ \mathbf{B a} \\ 137.34 \\ \hline \end{gathered}$	57-71	$\begin{array}{\|c\|} \hline 72 \\ \text { нанлим } \\ \text { Hf } \\ 178.49 \\ \hline \end{array}$	$\begin{gathered} \hline 73 \\ \text { tantalum } \\ \mathbf{T a} \\ 180.95 \\ \hline \end{gathered}$	$\begin{gathered} \hline 74 \\ \substack{\text { tuncsitn } \\ \mathbf{W} \\ 183.85 \\ \hline \\ \hline} \end{gathered}$	$\begin{gathered} \hline 75 \\ \text { Rнемим } \\ \mathbf{R e} \\ 186.2 \end{gathered}$	$\begin{gathered} \hline 76 \\ \text { osmum } \\ \text { Os } \\ 190.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 77 \\ \text { renvem } \\ \mathbf{I r} \\ 192.22 \\ \hline \end{gathered}$		$\begin{gathered} 79 \\ \text { coup } \\ \mathbf{A u} \\ 196.97 \\ \hline \end{gathered}$	$\begin{gathered} \hline 80 \\ \text { MRRCury } \\ \mathbf{H g} \\ 200.59 \\ \hline \end{gathered}$	$\begin{gathered} \hline 81 \\ \text { тиацим } \\ \mathbf{T l} \\ 204.37 \\ \hline \end{gathered}$	$\begin{gathered} \hline 82 \\ \text { LеसD } \\ \mathbf{P b} \\ 207.2 \\ \hline \end{gathered}$	$\begin{gathered} \hline 83 \\ \substack{\text { BIswurf } \\ \mathbf{B i} \\ 208.98 \\ \hline} \end{gathered}$	$\begin{gathered} \hline 84 \\ \text { poonvum } \\ \mathbf{P 0} \\ {[210.0]} \\ \hline \end{gathered}$	$\begin{gathered} 85 \\ \text { Astatine } \\ \mathbf{A t} \\ {[210.0]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 86 \\ \text { Ranow } \\ \mathbf{R n} \\ {[222.0]} \\ \hline \end{gathered}$
$\begin{gathered} 87 \\ \begin{array}{c} \text { francum } \\ \mathbf{F r} \\ {[223.0]} \end{array} \end{gathered}$	$\begin{gathered} \hline 88 \\ \begin{array}{c} 8 А п \text { Rum } \\ \mathbf{R a} \\ {[226.0]} \end{array} \end{gathered}$	89-103		$\begin{gathered} \hline 105 \\ \text { ровлим } \\ \text { Db } \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 106 \\ \text { sеавовсим } \\ \mathbf{S g} \\ {[266]} \end{gathered}$	$\begin{gathered} \hline 107 \\ \text { вонним } \\ \mathbf{B h} \\ {[262]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 108 \\ \text { Hassum } \\ \text { Hs } \\ {[265]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 109 \\ \text { меппеRuм } \\ \mathbf{M t} \\ {[266]} \\ \hline \end{gathered}$	110 Dадйтаттим Ds $[271]$	$\left.\left\lvert\, \begin{array}{c}1111 \\ \text { RoетGenum } \\ \mathbf{R g} \\ {[272]}\end{array}\right.\right]$							

LANTHANOIDS	$\begin{gathered} 57 \\ \text { Lanthanum } \\ \mathbf{L a} \\ 138.91 \end{gathered}$	$\begin{gathered} 58 \\ \text { cerum } \\ \text { Ce } \\ 140.12 \end{gathered}$	59 pRaseopxume $\mathbf{P r}$ 140.91 91	$\begin{gathered} \hline 60 \\ \begin{array}{c} \text { меоммим } \\ \text { Nd } \\ 144.24 \end{array} \end{gathered}$	61 рвоменним $\mathbf{P m}$ $[144.9]$ 93	$\begin{gathered} \hline 62 \\ \text { samarum } \\ \text { Sm } \\ 150.4 \\ \hline \end{gathered}$	$\begin{gathered} 63 \\ \text { вииорим } \\ \text { Eu } \\ 151.96 \end{gathered}$	$\begin{gathered} 64 \\ \text { савоимим } \\ \text { Gd } \\ 157.25 \end{gathered}$	$\begin{gathered} \hline 65 \\ \text { тевним } \\ \text { Tb } \\ 158.93 \\ \hline \end{gathered}$	$\begin{gathered} \hline 66 \\ \text { oxsposum } \\ \mathbf{D y} \\ 162.50 \\ \hline \end{gathered}$	$\begin{gathered} 67 \\ \text { номимм } \\ \mathbf{H o} \\ 164.93 \end{gathered}$	$\begin{gathered} \hline 68 \\ \text { еввім } \\ \mathbf{E r} \\ 167.26 \\ \hline \end{gathered}$	$\begin{gathered} \hline 69 \\ \text { тишим } \\ \mathbf{T m} \\ 168.93 \\ \hline \end{gathered}$		$\begin{gathered} \hline 71 \\ \text { чингтм } \\ \mathbf{L u} \\ 174.97 \\ \hline \end{gathered}$
ACTINOIDS	$\begin{gathered} \hline 89 \\ \text { Астлим } \\ \text { Ac } \\ {[227.0]} \\ \hline \end{gathered}$	$\begin{gathered} \hline 90 \\ \text { тновим } \\ \text { Th } \\ 232.04 \\ \hline \end{gathered}$	91 protactinum $\mathbf{P a}$ $[231.0]$	$\begin{gathered} \hline 92 \\ \text { URANuM } \\ \mathbf{U} \\ 238.03 \\ \hline \end{gathered}$		$\begin{gathered} 94 \\ \text { p.uronum } \\ \mathbf{P u} \\ {[239.1]} \end{gathered}$	95 $\left.\begin{array}{c}\text { Амевсим } \\ \text { Am } \\ \text { [243.1] }\end{array}\right]$	$\begin{gathered} 96 \\ \text { curvem } \\ \mathbf{C m} \\ {[247.1]} \end{gathered}$	$\begin{gathered} \hline 97 \\ \text { веккеци } \\ \mathbf{B k} \\ {[247.1]} \\ \hline \end{gathered}$	98 calfornum Cf [252.1]	99 епsтrinuм Es $[252.1]$	$\begin{gathered} \hline 100 \\ \text { еваним } \\ \text { Fm } \\ {[257.1]} \\ \hline \end{gathered}$	$\begin{gathered} 101 \\ \text { мепренич } \\ \text { Md } \\ {[256.1]} \\ \hline \end{gathered}$	$\begin{gathered} 102 \\ \text { мовним } \\ \text { No } \\ {[259.1]} \end{gathered}$	103 Lawreccum $\mathbf{L r}$ $[260.1]$

